RE 29395

Edition: 2022-03 Replaces: 2019-07

Directional control valve, direct operated, with integrated field bus (IFB-Multi-Ethernet)

Type 4WRPFH

- Size 6
- ► Component series 3X
- Maximum operating pressure 350 bar
- ▶ Rated flow 40 l/min ($\Delta p = 35$ bar)

CE

Features

_	\cap	_
	Opei	

- Integrated fieldbus (IFB Multi-Ethernet)
- Bus connection/service interface (Sercos, EtherCAT, EtherNet/IP, PROFINET RT, VARAN)
- ► Scalable
 - 2 configurable analog pressure sensor inputs
- ▶ Safe
 - Internal safety function (can be used up to category 4/PL e according to EN 13849-1)
 - CE conformity according to EMC Directive 2014/30/EU
- ► Precise
 - Integrated pressure/force control, optional
 - High response sensitivity and low hysteresis

Contents

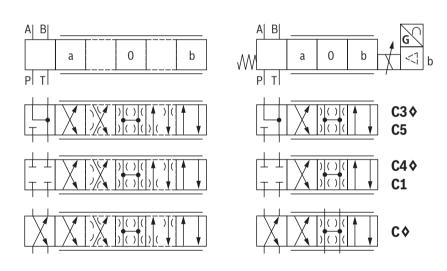
Features	1
Ordering code	2, 3
Symbols	3, 4
Function	5, 6
Technical data	7 9
Representation in the system network	10
Block diagram/controller function block	11
Electrical connections, assignment	12
LED displays	13
Characteristic curves	14, 15
Dimensions	16 18
Accessories	18, 19
Project planning and maintenance instructions	20
Further information	20

Ordering code

	02	03	04	05	06	07	80	09		10		11	12	13		14	15	16	17	18	
4	WRP	F	Н	6		В			_	3X	/				/	24		D9			
01	4 main p	oorts																			4
02	Directio	nal co	ontrol	valve																	WRP
03	With int	egrate	ed fiel	dbus																	F
04	Control	spool	/sleev	/e																	н
05	Size 6																				6
06	Symbols	s e.g.	C, C1	etc.;	for po	ssible	versi	on, se	e pag	e 3											
07	Installat																				В
Rate	d flow at									dge)											
08			. ,				(,			w ch	aracte	ristic							Т	
						"L				"P'	' (infle	ection	40%)			'P" (in	flectio	on 60%	6)		
	2 l/min					_						_				•	_				02
	4 l/min					_						✓					_				04
	12 l/mir	1				✓						_					_				12
	15 l/mir					_						_					/				15
	24 l/mir					✓						_					_				24
	25 l/mir					_						_					1				25
	40 l/mir					/	>					✓					_				40
low	characte																				
09	Linear	115110																			L ♦
				istic c	urve (inflec	tion 60	0% fo	r NG6	with r	ated 1	flows	" 15 " a	nd " 2 {	5", oth	erwise	infle	ction 4	10%)		L ♦
	Linear	d char	acteri														infle	ction 4	10%)		
10	Linear	d char	racteri eries :	30 3	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	10%)		Р
10	Linear Inflected	d char nent s (obse	racteri eries :	30 3	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	10%)		Р
09 10 Seal	Linear Inflected Compor material	d char nent s (obse	racteri eries :	30 3	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	10%)		P 3X
09 10 Seal 11	Linear Inflected Compor material NBR sea	d char nent s (obse	eries	30 s	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	10%)		P 3X M ♦
09 10 Seal 11	Linear Inflected Compore material NBR sea FKM sea Sure sens Without	d char nent s (obse als als cor (pr	eries : erve co	30 sompat	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	40%)		P 3X M ♦ V
09 10 Seal 11	Linear Inflected Compor material NBR sea FKM sea	d char nent s (obse als als cor (pr	eries : erve co	30 sompat	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	10%)		P 3X M ♦ V
10 11 11 Press 12	Linear Inflected Compore material NBR sea FKM sea Without Pressure	d char nent s (obseals als or (presseration)	eries : erve co ressur sure ra g 280 ensor	ompatere rating bar (posi	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	10%)		P 3X M \$ V 0 G
10 Seal 11 Press	Linear Inflected Compor material NBR sea FKM sea Without Pressure mal press Without	d char nent s (obseals als or (pr press e ratir	eries : erve co ressur sure ra g 280 ensor	ompatere rating bar (posi	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	10%)		P 3X M ♦ V
10 11 11 Press 12	Linear Inflected Compore material NBR sea FKM sea Sure sens Without Pressure nal press Without In port	d char ent s (obseals or (press e ratin ure se internal	eries : erve co ressur sure ra g 280 ensor	ompatere rating bar (posi	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	10%)		P 3X M V 0 G A
10 11 11 Press 12	Linear Inflected Compore Material NBR sea FKM sea Without Pressure Without In port / In port /	d char nent s (observables) (o	racteries: eries: erve co ressur sure ra ng 280 ensor nal pr	ompatere rating bar (posi	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	40%)		P 3X M \$ V O G G A B
10 11 11 Press 12	Linear Inflected Compore material NBR sea FKM sea Sure sens Without Pressure nal press Without In port	d char nent s (observables) (o	racteries: eries: erve co ressur sure ra ng 280 ensor nal pr	ompatere rating bar (posi	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	10%)		P 3X M V 0 G A
10 11 11 Press 12	Linear Inflected Compore Material NBR sea FKM sea Without Pressure Without In port / In port /	d char nent s (observables) (o	racteries : eries : erve co ressur sure ra ng 280 ensor nal pr	ompat re rating thating bar (posi	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	10%)		P 3X M \$ V O G G A B
10 11 11 11 12 12 14	Linear Inflected Compore Material NBR sea FKM sea Without Pressure Without In port I In ports	d charnent s (observed) (observed	racteries : eries : erve co ressur sure ra ng 280 ensor nal pr	ompat re rating thating bar (posi	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	40%)		P 3X M \$ V
09 10 11 11 12 nterior 13	Linear Inflected Compore Material NBR sea FKM sea Without Pressure Without In port In port In ports Supply	d char nent s (observables) (o	racteries : eries : erve co ressur sure ra ng 280 ensor nal pr	ompat re rating thating bar (posi	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	40%)		P 3X M \$ V
09 10 Seal 11 12 13 14 Ether	Linear Inflected Compore Material NBR sea FKM sea FKM sea Without Pressure Without In port I In port I In ports Supply	d char ent s (obseals als or (pr press e ratir ure s interior A B A and	ressure rang 280 ensor nal products	ompat re rating thating bar (posi	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	10%)		P 3X M
09 10 Seal 11 12 13 14 Ether	Linear Inflected Compore Material NBR sea FKM sea Sure sens Without Pressure In port I In ports Supply I The inter EtherNE	d char ent s (obseals als or (pr press e ratir ure s interior A B A and	ressure rang 280 ensor nal products	ompat re rating thating bar (posi	39 (30) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	40%)		P 3X M V 0 G C 24
09 10 Seal 11 12 13 14 Ether	Linear Inflected Compore Material NBR sea FKM sea FKM sea Without Pressure Mithout In port in port in ports Supply The inter EtherNE PROFIN	d char nent s (obseals als or (press e ratir A A A and voltag	ressure rang 280 ensor nal pr	ompatere rating bar (posiessure	ag (30 dibility) 39): uncl	nange	d inst	allatio	n and	conne	ection	dimer			infle	ction 4	40%)		P 3X M V 0 G A B C 24

Ordering code

1	WRP		ш	6		В			2V				1	24		D9			ĺ
01	02	03	04	05	06	07	80	09	10	11	12	13		14	15	16	17	18	


Connector

16	Voltage supply, enable acknowledgment	D9
Press	sure sensor interface	
17	Without interface	0
	Analog, a maximum of 3 external pressure sensors (0 10 VDC)	5 1)
18	Further details in the plain text	*

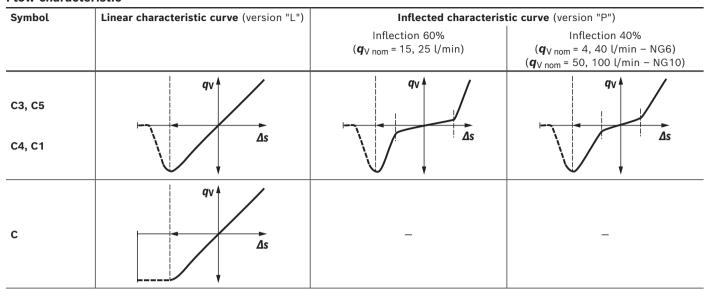
¹⁾ Only with version "0" at positions 12 and 13 ("4WRPFH 6 .B..-3X/.**00**/24.D95")

Notice: ♦ = Preferred type

Symbols

With symbols C5 and C1: 1)

 $\begin{array}{ll} \mathsf{P} \, \to \, \mathsf{A} \colon \, \boldsymbol{q}_{\mathsf{V} \, \mathsf{nom}} & \mathsf{B} \, \to \, \mathsf{T} \colon \, \boldsymbol{q}_{\mathsf{V} \, \mathsf{nom}} / 2 \\ \mathsf{P} \, \to \, \mathsf{B} \colon \, \boldsymbol{q}_{\mathsf{V} \, \mathsf{nom}} / 2 & \mathsf{A} \, \to \, \mathsf{T} \colon \, \boldsymbol{q}_{\mathsf{V} \, \mathsf{nom}} \end{array}$


Motice:

Representation according to DIN ISO 1219-1. Hydraulic interim positions are shown by dashes.

Standard = 1:1, $q_{\text{V nom}}$ 2:1 from rated flow = 40 l/min (version "40")

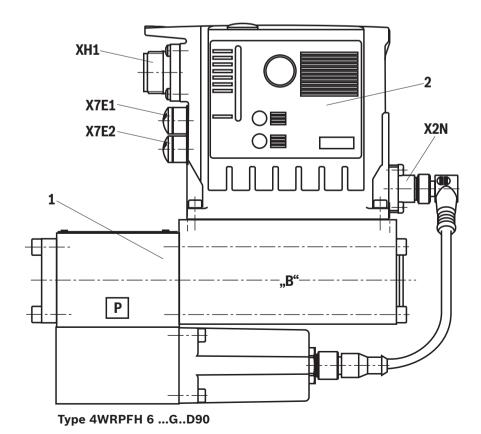
Symbols

Flow characteristic

Function

General

The IFB Multi-Ethernet valve (Integrated Fieldbus) is a digital directional control valve with integrated fieldbus.


The following operating modes are possible:

- ► Standard:
 - Valve direct control
 - Flow control
- ▶ Version "5" or with internal pressure sensors:
 - Pressure/force control
 - Active damping
 - Alternating control (flow pressure/force);
 pQ function (flow-controlled)
- ► Command value presetting is done purely digitally via the Ethernet interface (X7E1 or X7E2)
- ► The feedback information of the actual value signals to the higher-level control is provided via the Ethernet interface (X7E1 or X7E2)
- ► The controller parameters are set via the Ethernet interface (X7E1 or X7E2)

Set-up

The directional control valve with IFB Multi-Ethernet electronics mainly consists of:

- ► Direct operated directional control valve (1) with control spool and sleeve in servo quality
- ► Integrated fieldbus (3) with:
 - connector, voltage supply, safety shut-down (XH1)
 - Ethernet interfaces (X7E1, X7E2)
 - Analog sensor interfaces (X2N, optional)

Function

Function

When the control solenoid of the valve is switched off (enable pin D, low signal), the spring-operated control spool is in the fail-safe position.

When the control solenoid is activated (enable pin D, high signal), the digital electronics (OBE) compares the specified command value to the position actual value. In case of control deviations, the control of the solenoid is changed so as to be compensated. Due to the change in magnetic force, the control spool is adjusted against the spring. Stroke/control spool cross-section is regulated proportionally to the command value. In case of a command value presetting of 0, the electronics adjusts the control spool against the spring to central position. In deactivated condition, the spring is untensioned to a maximum and the valve is in fail-safe position.

Safety function

Thanks to the control solenoid (enable pin D, low signal) at the connector (XH1), shut-off is enabled.

After shut-off the control speed of the valve is in fail-safe.

After shut-off, the control spool of the valve is in fail-safe position.

Enable acknowledgment pin C for solenoid B is "high". By connection of the control solenoid (enable pin D, high signal), the valve can be regulated in both directions by command value presetting. Enable acknowledgment pin C for solenoid B is "low".

The integrated control electronics of the valve enables the additional shut-off of a channel according to EN 13849-1 in the direction P to A (depending on the application, the fail-safe position must be adhered to). For this purpose, a suitable control system must be provided to perform the plausibility check between the direction-dependent valve signals "enable input" and "enable acknowledgment" (diagnosis signal fed back by the valve) and react in an error case. It is not possible to switch off direction P→B in a safety-relevant manner according to EN 13849-1 (depending on valve type).

Monitoring

The digital control electronics enable comprehensive monitoring functions/error detection including:

- ▶ Undervoltage
- ► Communication error
- ► Cable break for analog sensor inputs
- ► Monitoring of the microcontroller (watchdog)
- ► Temperature of the integrated electronics

IndraWorks DS PC program

To implement the project planning task and to parameterize the valve, the user may use the IndraWorks DS engineering tool (see accessories):

- ▶ Project planning
- ► Parameterization
- ▶ Commissioning
- ► Diagnosis
- ► Comfortable administration of all data on a PC
- ▶ PC operating systems: Windows 7-10

Motice:

- ▶ 4/4 directional control valves do not have a leakage-free basic locking when deactivated. Leakage must be considered when designing the drive. While the electrical supply voltage is being switched off, the drive may be accelerated for a short time in functional direction P->B.
- ► Valve type 4WRPFH can be used as shut-off element cat. 3 or 4 (up to PL e according to EN 13849-1). For both categories, an additional shut-off element is required to achieve a two-channel shut-off. For further information on the safety application, see operating instructions 29391-B.

Technical data

(For applications outside these values, please consult us!)

General			
Type of connection	on		Subplate mounting
Porting pattern			ISO 4401-03-02-0-05
Weight	▶ Versions "00D90" and "00D95	kg	3.5
	► Versions "GAD90", "GBD90" and "GCD90"	kg	4.8
Installation positi	on		any
Ambient tempera	ture range	°C	-20 +60
Storage temperat	ure range	°C	+5 +40
Maximum storage time			1 (if the storage conditions are observed, refer to the operating instructions 07600-B)
Maximum relative	humidity (no condensation)	%	95
Maximum surface	temperature	°C	150
MTTF _d value acco	ording to EN ISO 13849	years	150 (for further details, see operating instructions 29391-B)
Sine test according	ng to DIN EN 60068-2-6		10 2000 Hz/maximum of 10 g/10 cycles/3 axes
Noise test accord	ing to DIN EN 60068-2-64		20 200 0Hz/10 g _{RMS} /30 g peak/30 min./3 axes
Transport shock a	according to DIN EN 60068-2-27		15 g / 11 ms / 3 axes
Conformity	► CE according to EMC directive 2014/30/EU, tested according to		EN 61000-6-2 and EN 61000-6-3
	► RoHS directive		2011/65/EU ¹⁾
Protection class a	according to EN 60529		IP65 (if suitable and correctly mounted mating connectors are used)

Hydraulic										
Maximum operating	► Ports A, B, P	bar	350							
pressure	▶ Port T	bar	250							
Hydraulic fluid			see table	page 8						
Hydraulic fluid temper	ature range (flown-through)	°C	-20 +60)						
Viscosity range	mm²/s	20 100								
	► Maximum admissible	mm²/s	10 800							
	degree of contamination of the ness class according to ISO 4406 (c)		Class 18/	16/13 ²⁾						
Rated flow (Δp = 35 ba	ar per control edge ³⁾)	l/min	2	4	12	15	24/25	40		
Leakage flow	► Linear characteristic curve "L"	cm³/min	< 150	< 180	< 300	-	< 500	< 900		
(at 100 bar)	► Inflected characteristic curve "P"	cm³/min	-	-	-	< 180	< 300	< 450		
Limitation of use	► Symbols C3, C5	bar	350	350	350	350	350	160		
(transition to fail-safe position)	► Symbols C4, C1	bar	350	350	350	280	250	100		

The product fulfills the substance requirements of the RoHS directive 2011/65/EU.

³⁾ Flow for deviating Δp (per control edge):

$$q_x = q_{Vnom} \times \sqrt{\frac{\Delta p_x}{35}}$$

²⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components.

Technical data

(For applications outside these values, please consult us!)

Hydraulic fluid		Classification	Suitable sealing materials	Standards	Data sheet	
Mineral oils	,	HL, HLP, HLPD, HVLP, HVLPD	NBR, FKM	DIN 51524	90220	
Bio-degradable	► Insoluble in water	HETG	FKM	100 15000		
		HEES	FKM	ISO 15380	90221	
	► Soluble in water	HEPG	FKM	ISO 15380		
Flame-resistant	► Water-free	HFDU (glycol base)	base) FKM			
		HFDU (ester base)	FKM	ISO 12922	90222	
		HFDR	FKM			
	► Containing water	HFC (Fuchs: Hydrotherm 46M, Renosafe 500; Petrofer: Ultra Safe 620; Houghton: Safe 620; Union: Carbide HP5046)	NBR	ISO 12922	90223	

Important information on hydraulic fluids:

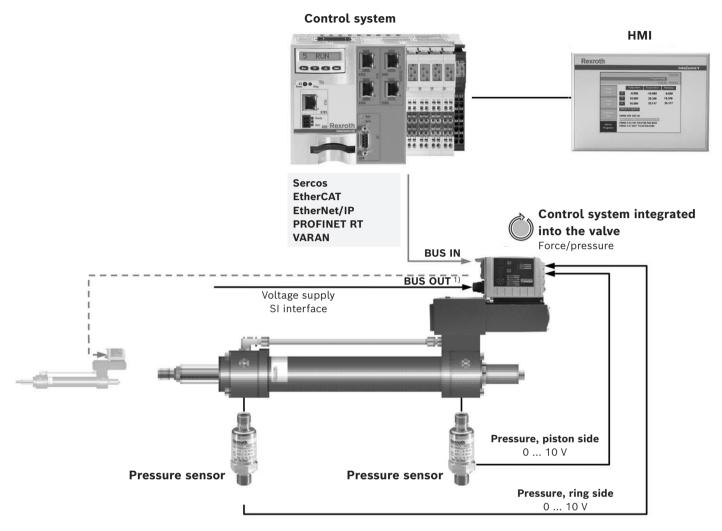
- ▶ For further information and data on the use of other hydraulic fluids, please refer to the data sheets above or contact us.
- ▶ There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.).
- ▶ The ignition temperature of the hydraulic fluid used must be 50 K higher than the maximum surface temperature.
- ▶ Bio-degradable and flame-resistant containing water: If components with galvanic zinc coating (e.g. version "J3" or "J5") or parts containing zinc are used, small amounts of dissolved zinc may get into the hydraulic system and cause accelerated aging of the hydraulic fluid. Zinc soap may form as a chemical reaction product, which may clog filters, nozzles and solenoid valves - particularly in connection with local heat input.

► Flame-resistant - containing water:

- Due to the increased cavitation tendency with HFC hydraulic fluids, the life cycle of the component may be reduced by up to 30% as compared to the use with mineral oil HLP. In order to reduce the cavitation effect, it is recommended - if possible specific to the installation - backing up the return flow pressure in ports T to approx. 20% of the pressure differential at the component.
- Dependent on the hydraulic fluid used, the maximum ambient and hydraulic fluid temperature must not exceed 50 °C. In order to reduce the heat input into the component, the command value profile is to be adjusted for proportional and high-response valves.

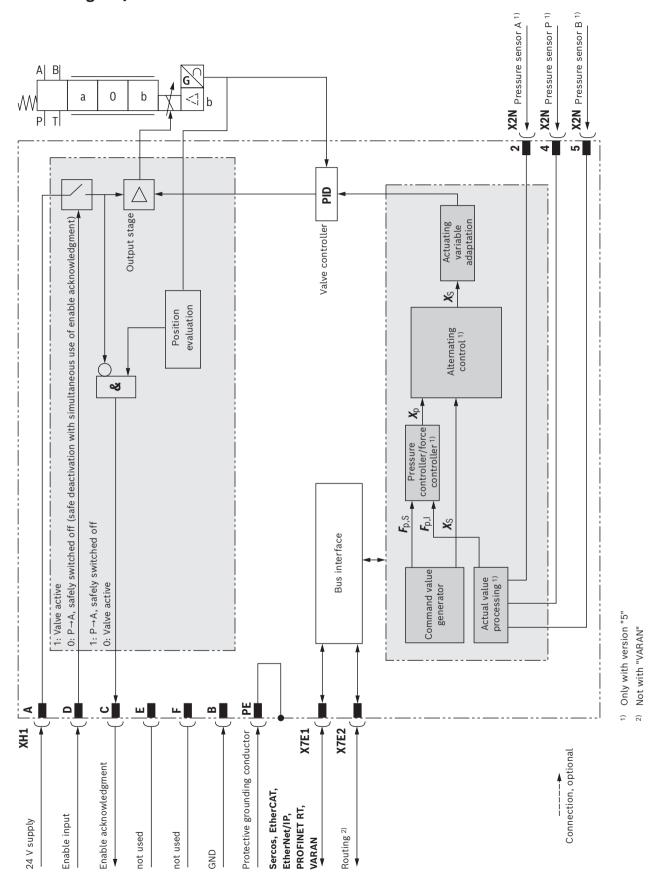
Static/dynamic		
Hysteresis	%	≤ 0.2
Manufacturing tolerance q _{Vmax}	%	≤10
Temperature drift	%/10 K	Zero shift < 0.25
Pressure drift	%/100 bar	Zero shift < 0.15
Zero point calibration	%	±1 (ex works)

Technical data


(For applications outside these values, please consult us!)

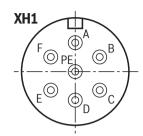
Supply voltage 4)	► Nominal value	VDC	24
117	► Minimum	VDC	18
	► Maximum	VDC	36
	► Maximum residual ripple	Vpp	2.5 (comply with the absolute supply voltage limit values)
Current consumption	► Maximum ⁵⁾	А	2.5
	► Impulse current	А	4
Maximum power cons	umption	W	40
Relative duty cycle		%	100 (continuous operation)
Fuse protection, exter	nal	А	4, time-lag
Functional ground and	screening		see connector pin assignment (CE-compliant installation) page 12
Booting time		S	<15
Switching input	► Quantity		1
Enable XH1	► Low level	V	-3 5
	► High level	V	15 U B
	► Maximum current consumption at high level	mA	<1
Switching output	► Quantity		1
Enable	► Low level	V	0 3
acknowledgment XH1	► High level	V	15 U B
	► Current carrying capacity	mA	50 (short-circuit-proof)
	► Inductive load admissible		no
Analog sensors X2N	► Quantity		3 (version "5")
	► Supply voltage	V	24
	► Maximum supply current	mA	50
	► Voltage inputs		
	- Measurement range	V	0 10
	- Input resistance	kΩ	100 +10%

⁴⁾ Voltage limit values must be observed directly at the connector of the valve (observe line length and cable cross-section!)

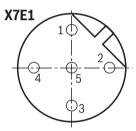

⁵⁾ The maximum current consumption will increase when using the sensor inputs or the switching output according to the external load

Representation in the system network (version "5")

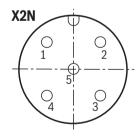
¹⁾ Not with "VARAN"


Block diagram/controller function block

Electrical connections, assignment


Connector pin assignment XH1, 6-pole + PE according to DIN 43563

Pin	Assignment of interface D9
Α	24 VDC supply voltage 1)
В	GND
С	Enable acknowledgment 24 VDC (I_{max} 50 mA) ²⁾ (high \geq 15 V; low < 2 V)
D	Enable input 24 VDC (high ≥ 15 V; low < 2 V)
Е	not used
F	not used
PE	Functional ground (connected directly to metal housing)


Connector pin assignment for Ethernet interface "X7E1" and "X7E2" (coding D), M12, 4-pole, socket

Pin	Assignment
1	TxD +
2	RxD +
3	TxD -
4	RxD -
5	not used

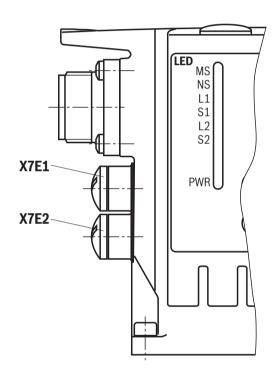
Analog configurable sensor interface, port "X2N" (coding A), M12, 5-pole, socket

Pin	Assignment
1	+24 V voltage output
2	Analog sensor input 2 (0 10 V)
3	GND
4	Analog sensor input 4 (0 10 V)
5	Analog sensor input 3 (0 10 V)

Only with version "5"

Notice:

- ▶ Reference potential for all signals: GND
- ► We recommend connecting the shields on both sides via the metal housings of the plug-in connectors.


 Using connector pins will affect the effectiveness of the shielding effect. Internal screens are not required.

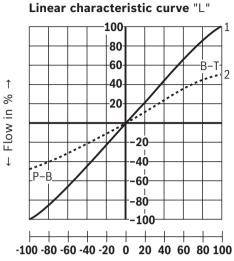
¹⁾ A load increases the current consumption on pin A

²⁾ Enable acknowledgment is issued only if the valve has safely switched off according to EN 13849-1, see operating instructions 29391-B.

LED displays

LED	Interface	Sercos	EtherNET/IP	EtherCAT	PROFINET RT	VARAN
MS		Module status	Module status	Module status	Module status	Module status
NS	Electronics module	S	Network status and others			
L1	X7E1	Link and others	Link and others	Link/activity	Link and others	Link and others
S1	A/EI	Activity and others	Activity and others	not used	Activity and others	Active and others
L2	X7E2	Link and others	Link and others	Link/activity	Link and others	not used
S2	X/E2	Activity and others	Activity and others	not used	Activity and others	not used
PWR	XH1	Power	Power	Power	Power	Power

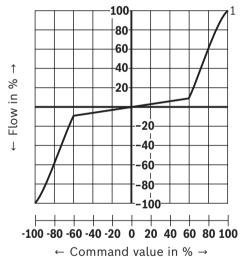
Displays of the status LEDs


Power LED (LED PWR)	Display status
Off	No voltage supply
Green	Operation
Module status LED (LED MS)	Display status
Off	No voltage supply
Green-red, flashing	Initialization
Green, flashing	Drive ready for operation
Green	Drive active
Orange, flashing	Warning
Red, flashing	Error
Green, rapidly flashing	Firmware must be loaded
Link LED (LED L1)	Display status
Permanently lit	Cable plugged in, connection established
Activity LED (LED S1)	Display status
Flashing	Data sent/received

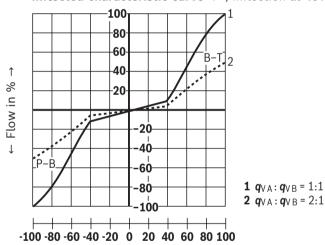
Motice:

- ► For the connection to the M12 sockets, we recommend using self-locking mating connectors
- ▶ The MS module status LED relates to the electronics module
- ► The NS network status LED indicates the status of the control communication, see application description 30338-FK
- ► LEDs L1, S1, L2 and S2 relate to interfaces "X7E1" and "X7E2"
- ► For a detailed description of the diagnosis LEDs, please refer to the functional description Rexroth HydraulicDrive HDx.
- ► Function is only available after start-up of the electronics.

Characteristic curves: Flow characteristic (measured with HLP46, ϑ_{oil} = 40 ±5 °C)


Flow/signal function

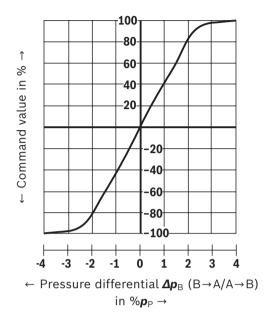
1 q_{VA} : q_{VB} = 1:1 2 q_{VA} : q_{VB} = 2:1


← Command value in % →

Inflected characteristic curve "P", inflection at 60%

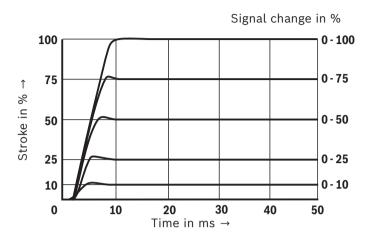
1 qVA: **q**VB = 1:1

Inflected characteristic curve "P", inflection at 40%

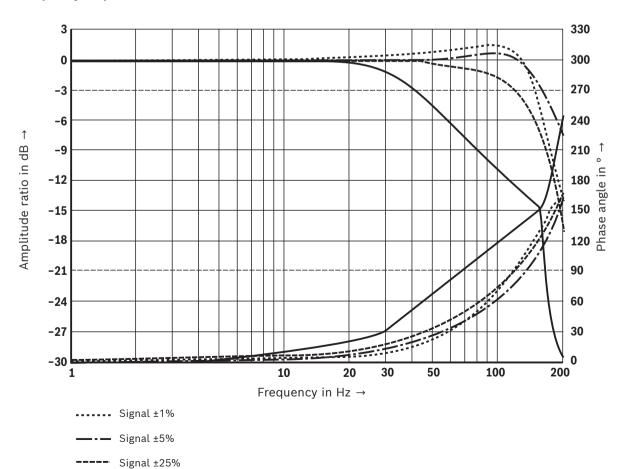

← Command value in % →

	Fail-safe positi	on		
A B G G		Leakage flow at 100 bar	P→A P→B	50 cm³/min 70 cm³/min
M _T A	<u>[()[(</u>	Flow at 4p = 35 bar	A→T B→T	10 20 l/min 7 20 l/min
A B G		Lashara flavort 100 harr	P→A P→B	50 cm ³ /min 70 cm ³ /min
M <u> </u>	<u>[○[(</u>	Leakage flow at 100 bar	A→T B→T	70 cm ³ /min 50 cm ³ /min
Fail-safe	$p = 0 \text{ bar } \rightarrow 7 \text{ ms}$	Enable "off" or internal shut-off if an error has occurred $U_{\rm R} \le 18 {\rm Vor} I \le 2 {\rm mA} ({\rm with} 4 \dots 20 {\rm mA} {\rm signal}, {\rm cable} {\rm break} {\rm detection}$		
rait-sale	p = 100 bar → 10 ms	current threshold configurable	0 ,	able break detection:

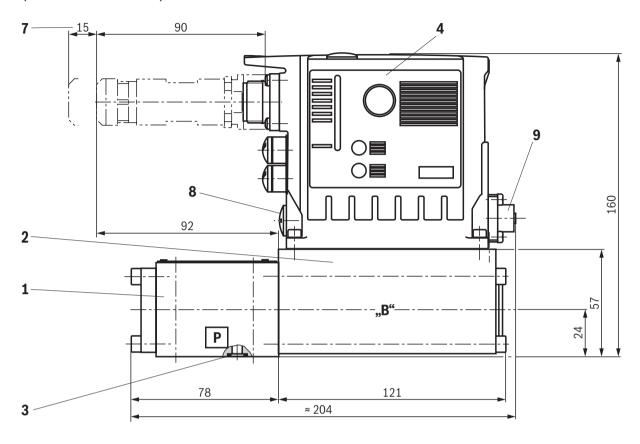
Characteristic curves

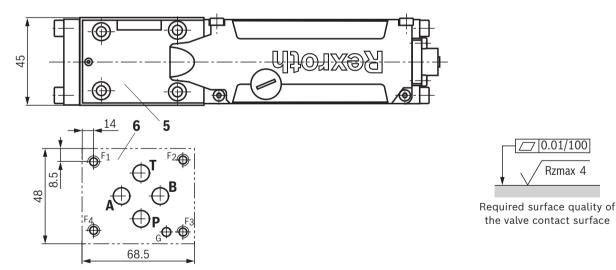

(measured with HLP46, 3oil = 40 ±5 °C)

Pressure/signal characteristic curve



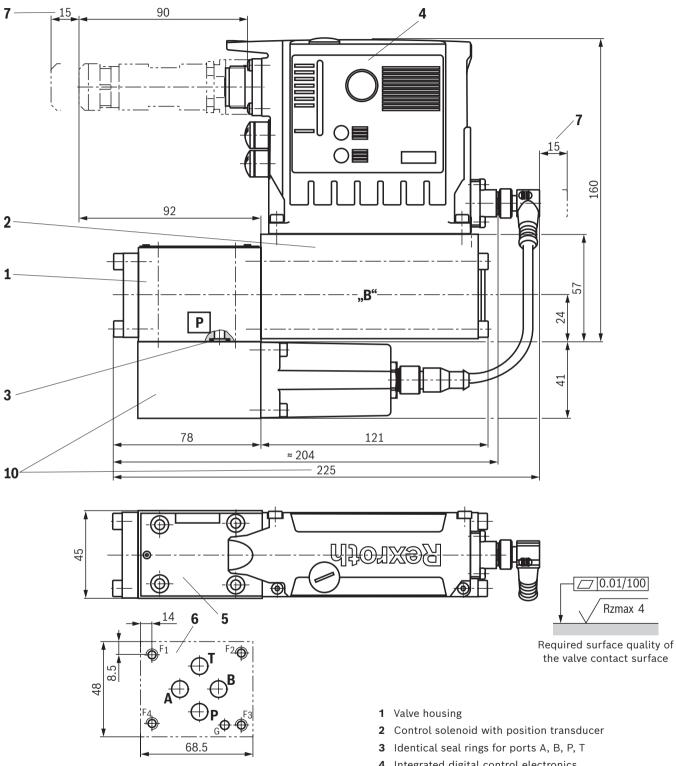
Signal ±100%


Transition function with stepped electric input signals



Frequency response

Dimensions: Versions "00..D90" and "00..D95" (dimensions in mm)


Valve mounting screws see page 18.

Notice:

The dimensions are nominal dimensions which are subject to tolerances.

- 1 Valve housing
- 2 Control solenoid with position transducer
- 3 Identical seal rings for ports A, B, P, T
- 4 Integrated digital control electronics
- 5 Name plate
- **6** Machined valve contact surface, porting pattern according to ISO 4401-03-02-0-05
- 7 Space required to remove the mating connectors
- 8 Plug screw PG, version "00..D90" only
- **9** Version "00..D95" only

Dimensions: Versions "GA..D90", "GB..D90" and "GC..D90" (dimensions in mm)

Valve mounting screws see page 18.

Notice:

The dimensions are nominal dimensions which are subject to tolerances.

- 4 Integrated digital control electronics
- 5 Name plate
- 6 Machined valve contact surface, porting pattern according to ISO 4401-03-02-0-05
- 7 Space required to remove the mating connectors
- 10 Integrated pressure sensor

Dimensions

Valve mounting screws (separate order)

Version	Hexagon socket head cap screws	Material number
"00D90", "00D95"	4 hexagon socket head cap screws ISO 4762 - M5 x 30 - 10.9-CM-Fe-ZnNi-5-Cn-T0-H-B Friction coefficient μ_{total} = 0.09 0.14; tightening torque M_{A} = 6 ⁺² Nm	R913048086
"GAD90", "GBD90", "GCD90"	4 hexagon socket head cap screws ISO 4762 - M5 x 70 - 10.9-CM-Fe-ZnNi-5-Cn-T0-H-B Friction coefficient μ_{total} = 0.09 0.14; tightening torque M_{A} = 8.9 Nm ±10%	R913043762

Motice:

The tightening torque of the hexagon socket head cap screws refers to the maximum operating pressure.

Accessories (separate order)

Protective cap

Protective cap M12	Version	Material number
		R901075563

Parameterization

The following is required for the	Material number/download		
1 Commissioning software	IndraWorks, Indraworks D, Indraworks DS	www.boschrexroth.com/IFB	
2 Connection cable, 3 m	Shielded, M12 on RJ45, length can be freely selected (= xx.x)	R911172135 (additional indication of type designation RKB0044/xx.x)	

Accessories (separate order)

Mating connectors and cable sets

Port	Designation	Version	Short designation	Material number	Data sheet
XH1	Mating connector; for valves with round connector,	Straight, metal	7PZ31M	R900223890	08006
		Straight, plastic	7PZ31K	R900021267]
	6-pole + PE	Angled, plastic	_	R900217845	-
	Cable sets;	Plastic, 3.0 m	7P Z31 BF6	R901420483	08006
	for valves with round connector,	Plastic, 5.0 m		R901420491]
	6-pole + PE	Plastic, 10.0 m		R901420496	
		Plastic, 20.0 m	_	R901448068	-
X7E1, X7E2	Cable set; shielded, 4-pole, D coding	Straight connector M12, on straight connector M12, line cross-section 0.25 mm², CAT 5e, length freely selectable (= xx.x)	_	R911172111 1)	_
	Cable set; shielded, 4-pole	Straight connector M12, on straight connector RJ45, line cross-section 0.25 mm², CAT 5e, length freely selectable (= xx.x)	_	R911172135 ²⁾	_
X2N ³⁾	Cable set; shielded, 5-pole, for connecting Rexroth pressure sensors, type HM20, A coding	PUR/PVC, straight connector M12, on straight socket M12, line cross-section 0.34 mm², 0.6 m	-	R901111709	-
		PUR/PVC, straight connector M12, on straight socket M12, line cross-section 0.34 mm², 1.0 m	-	R901111712	_
		PUR/PVC, straight connector M12, on straight socket M12, line cross-section 0.34 mm², 2.0 m	-	R901111713	-
	Cable set; shielded, 5-pole, A coding	Straight connector M12, on free line end, line cross-section 0.34 mm², 1.5 m	-	R901111752	-
		Straight connector M12, on free line end, line cross-section 0.34 mm², 3.0 m	-	R901111754	-
		Straight connector M12, on free line end, line cross-section 0.34 mm², 5.0 m	-	R901111756	-
		Straight connector M12, on free line end, line cross-section 0.34 mm², 10.0 m	-	R913005147	-

- 1) Additional indication of type designation RKB0040/xx.x
- 2) Additional indication of type designation RKB0044/xx.x
- 3) Only with connection of an external sensor, type HM20

Notice:

- ► Tighten the M12 connector with a manual torque wrench by 1 Nm.
- ► Self-locking M12 cables must be used.
- ► It must be ensured that cables are secured without radial force.
- ▶ All cables connected to "XH1", "X7E1" and "X7E2" must be bundled in a wire harness after 20 cm the latest. The wire harness must be fixed after further 20 ... 30 cm. Make sure that there is no relative motion between the fixation and the valve.
- ▶ Before the fixation point, there must not be any cable loops.
- ▶ In general, the information on installation provided by the cable manufacturers must be observed.
- Respectively, the cable of "X2N" (if used) is also fixed as described above.
- ► For further information, see operating instructions 29391-B

Project planning and maintenance instructions

- ► The supply voltage must be permanently connected; otherwise, bus communication is not possible.
- ► If electro-magnetic interference is to be expected, take appropriate measures for ensuring the function (depending on the application, e.g. shielding, filtration).
- ► The devices have been tested in the plant and are supplied with default settings.
- ► Only complete devices can be repaired.
 Repaired devices are returned with default settings.
 User-specific settings will not be applied.
 The machine end-user will have to retransfer the corresponding user parameters.

Further information

•	High-response/proportional valve with Multi-Ethernet interface	Operating instructions 29391-B
•	Operation fieldbus electronics (xx = software version): - Functional description Rexroth HydraulicDrive HDx-20 - Parameter description Rexroth HydraulicDrive HDS-16, HDx-17 HDx-20 - Description of diagnosis Rexroth HydraulicDrive HDS-16, HDx-17 HDx-20	30338-FK30330-PA30330-WA
	Subplates	Data sheet 45100
	Hydraulic fluids on mineral oil basis	Data sheet 90220
•	Environmentally compatible hydraulic fluids	Data sheet 90221
•	Flame-resistant, water-free hydraulic fluids	Data sheet 90222
•	Hexagon socket head cap screws, metric/UNC	Data sheet 08936
•	Hydraulic valves for industrial applications	Operating instructions 07600-B
•	Directional control valves, direct operated, with electrical position feedback and integrated electronics (OBE)	Data sheet 29035
•	Directional control valve with integrated digital axis controller (IAC-R) and field bus interface	Data sheet 29191
•	Directional control valve with integrated digital axis controller (IAC-R) and clock-synchronized PROFIBUS DP/V2 (PROFIdrive profile)	Data sheet 29291
•	CE Declaration of Conformity	upon request
•	General product information on hydraulic products	Data sheet 07008
•	Installation, commissioning and maintenance of servo valves and high-response valves	Data sheet 07700
•	Assembly, commissioning and maintenance of hydraulic systems	Data sheet 07900
•	Commissioning software and documentation on the Internet	www.boschrexroth.com/IFB
•	Information on available spare parts	www.boschrexroth.com/spc

Bosch Rexroth AG Industrial Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52/40 30 20 my.support@boschrexroth.de www.boschrexroth.de © All rights reserved to Bosch Rexroth AG, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.